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ON A GENERALIZATION OF THE ELIMINATION OF THE 
SHORT PERIOD TERMS O F  A FIRST ORDER GENERAL PLANETARY THEORY 

THROUGH VON ZEIPEL'S METHOD AND HORI CANONICAL VARIABLES 

ABSTRACT 

We previously eliminated, through Von Zeipel's method, the short  period t e r m s  
of a first o rde r  general  planetary theory i n  which we neglect the  powers of eccen- 
tricities and mutual inclination higher than the third. We enlarge our  r e su l t s  by 
considering II planets instead of two, that is to say  II - 1 disturbing planets instead 
of one (n > 2), by re fer r ing  the inclinations to a common fixed plane, the longitudes 
to a common origin and by introducing the Hori canonical var iables  instead of the 
Delaunay canonical variables. W e  thus eliminate the smal l  divisors  which appeared 
with the Delaunay var iables  i n  the par t ia l  derivatives of the determining function 
with respect  to the l inear  variables,  On the other hand, the arguments of the s ines  
and cosines of the truncated Fourier series of the disturbing function, of the deter-  
mining function and of the derivatives of the determining function with respect  to the 
Hori  var iables  are of the  form g A,, - (1 A",  q being a relat ive integer,  which was not 
the case  with the Poincare  variables.  
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ON A GENERALIZATION OF THE ELIMINATION O F  THE 
SIIORT PERIOD TERMS O F  A FIRST ORDER GENERAL PLANETARY THEORY 

THROUGH VON ZEIPEL'S METHOD AND HORI CANONICAL VARIABLES 

1. INTRODUCTION 

The purpose of this paper is to enlarge the results of two previous papers dealing 
with the elimination, through Von Zeipel's method, of the short period te rms  of a f i r s t  
order  general planetary theory in which we neglect the powers of eccentricities and 
mutual inclination higher than the third(* ' .  We consider n planets instead of two that is 
to say n - 1 disturbing planets instead of one ( n  > 2); we refer the dislurbed planet P, to 
the Sun S, the disturbing planet P, ( i  = 2, 3, . . . , 1 1 )  to the center of mass of S and P, , 
p2 , . . . , P,-, ; we refer the inclinations to a common fixed plane, the longitudes to a com- 
mon origin and we reduce the Fourier series of the principal part Flp of the disturbing 
function, that of the determining function s which corresponds to F, and that of the 
partial derivatives of Slp with respect to \he canonical variables to tke sum of their p + 1 
f i r s t  t e rms ,  the integer p being unspecified. Moreover, instead of using, as we did in our 
two previous papers, the Delaunay variables, we use the Hori variables which are defined 
by the equalites: 

- 
PI1 = v - 2 Nu c o s  (A,, - \ : , I ) ,  Q,, = y - 2 Nu s i n  (A,, - C,,) 

with Mu = GL1 - LU , Nu = HII - G I , ,  A I ,  = 
variables, i ,, , g 
longitude of the perihelia and the longitude of the node. 

t gu + h ,  L,, ,  c u ,  H,, being the linear Delaunay 
11, the angular Delaunay variables and G , Ilu being respectively the 

We star t  from the generalized development of the principal part  Flp of the disturbing 
function that we performed in a recent paper up to the terms of order four with respect to 
the eccentricities and the sines of inclinations and that we reduce to i ts  t e rms  of order 
0, 1, 2, 3 '  ) . The Newcomb operators D,,," defined in our paper' ) and which operate on 
functions of the ratios all , ,  of the semi major axis (u, v = 1, 2,  . . . , n )  a r e  then replaced 
by the operators 9 ( i > / 2 H w )  (w = 1, 2 ,  . . , , n) and the truncated Fourier series of F,, , 
Slp  and the partial derivatives of S I P  with respect to the canonical variables are performed 
according to the sines and cosines of the multiples of the pair  of angular variables A l l ,  
A, . A s  in the case of the Poincare' variables, the partial derivatives of S l p  with respect 
to the linear variables do not introduce sinal1 divisors as they do in the case of the De- 
launay variables. On the other hand, the sum of the multiples of the A, and A, in the ar- 
guments of the sines and cosines of the truncated Fourier ser ies  of Flp , Slp and the partial 
derivatives of S l p  with respect to the Hori canonical variables is equal to zero,  that is to 
say that each argument has the forin q xu - q hv , which i s  not the case if we  deal with the 
Poincar6 variables. 

2. CANONICITY O F  THE HORI VARIABLES 

We s ta r t  f rom the canonical system of Poincar6 variables to which we apply the con- 
dition P of Poincar6. In order to shorten the calculation, we consider only one set  of Poin- 
care' variables and the corresponding set  of the Hori variables. The extension of the proof 
in  the case of several  se t s  of such variables is obvious. 

1 



The Poincare variables are L, x, p ,  A ,  y, 9 with 

x = r C R c o s ~ ,  y = - r n s i n ~ ,  

7 

p 1- C O S  fl, q - v‘- 2N s i n  fl (2). 

The Hori variables are H ,  x, P ,  A, Y ,  Q obtained from the equality (1) in which we 

According to the condition P of Poincar6, we have to show that the expression 

express the index U .  

A d L i  y d x  t q d p - X d H - Y d X - Q d P  

is an  exact differential, that is to say, since H = L + M + N ,  that 

y d x  t q d p  - A ( d M  t dN) - Y d X  - Q d P  

is an  exact differential. (3) may be written 

( y d x -  A d M - Y d X )  + ( q d p - A d N - Q d P ) .  

We have, according to (1) in which we suppress the index u and according to (2) 

y dx - A dM - Y dX - (- 2M s i 11’ Z + 2M s 111’  ( A  - 0 ) )  do 
I + ( s i n  0 c o s  7; - A + s i n  ( A  - w) c o s  (A - Z ) )  dM 

- 2M s in’  (A - 0 )  d \  

(4) will be an  exact differential if and only if: 

(3) 

(4) 

. 

A very brief calculation shows that those three conditions (5) are effectively satisfied. 
(4) is therefore an exact differential. 

A s imilar  calculation would show that q c l p  - A - Q‘IP is also an  exact differential. 
(3) is therefore an exact differential and the Hori variables a r e  canonical. 

3. PRELIMINARY CALCULATIONS 

Let U S  consider again the Hori variables defined by the equality (1). From (1) we 
obtain: 

2 



Since we restr ic t  ourselves to a first order theory, we have, according to the nota- 
tions of our previous paper above mentioned 

where 
s 

that is to say, according to (6): 

I 
whence: 

(9). 
u , v 

3 
aau,v _ _  4 
- -  

aHU 2Hu t X i  t Y: t Pi t Qi 
The Newcomb operator Du, = n (d/da,, , ) acting on functions of aU, and Laplace 

I coefficients which are themselves fun&ions of a u ,  v ,  we have the equality between operators: 

that is to say, according to (9): 

with 

whence : 

From (10) and (12) we obtain: 

'd D",, = A -  
d% 

Moreover, f rom the second equality (7) and from the equality 

X: t Y: t P: t Q: 
2 

Lv = HV t 

3 



we obtain: 

ev and 'yv being respectively the eccentricity and the sine of the inclination of the planet 
p,, we have: 

whence : 
Hv (m - 1) 

M.. 7 

that is to say, if we neglect the powers of eccentricities and the sines of inclinations h-gher 
than the third: 

whence: 

Therefore: 

We should see, likewise, that 

whence 

Therefore: 

Xv C.  cv v q  co s (A, - :A, ) 

- 1  Nv -- 2 "v y: 

- 2NV ~ HV >: . 

7 

Pv - yv Hv C O S  (Av - 

From (16), (177, (18) and the corresponding equalities in  the index 11, we deduce 
easily the values of the expressions 



On the other hand, (16), (17), (18) and the corresponding equalities in  the index u 
show that x v / q  and Y,, /VY have the same order  of magnitude as e,,, x,, / v r  and 
Yu /L% the same order  of magnitude as eu , p V / q  and Qv /dF the same order  of magni- 
tude as y,,, P, /bq and Q, /% the same order of magnitude as 7,. Neglecting the pow- 
e r s  of eu , r,, e,,, r,, and consequently those of x , Y , P, , Q,, , Xv , Yv , P,,, Qv higher than 
the third, we have therefore, according to (8) and (lg): 

and, according to (11): 

4. EXPRESSION OF THE PRINCIPAL PART F~~ 
OF THE DISTURBING FUNCTION 

It is obtained from the expression of F~~ calculated in our previous paper (pages 4 
to 29)( ) truncated to its te rms  of order  0, 1, 2, 3 in  e" ,  e,, , yu,yv, in  which 

are replaced by their values obtained from (16), (17), (18) and in which Du ,, , Di ,, , D:,, , 
A, AZ7 A 3 ,  a,,,,, 1/av are replaced by their values (lo), (13), (14), (11), (21), (22), (19), (20). 
We have 

5 





. 

(Xv cos ( j h u  - j h v )  - Yv s i n  ( j A u  - j hv ) )  

7 



(xv C O S  ( jAu - jh,) t Y, s i n  ( j h u  - jhv) )  

x ((Xi -Yi) COS ( jhu - jh,)  - 2Xu Yu s i n  ( j h u  - jh,))  

x ((Xi -Yi) c o s  ( jhu - jh , )  t 2X,, Yu s i n  (jXU - jhv) )  

((x,, xv 4- y,] Y,) C O S  ( j h u  - jhv )  -I (Xu Yv - YI1 X,) s i n  (jh,, - jXv))  

. 



I -  

l k  

1 3 .  5 .2 1 . 3  -17 5 a - ' 7 i J  t - J  - - -  j - L j 2 )  Hu ;iHu 6 (128 16 8 
1 

Hll tx H: 
t 

- 1 3 .  5 j 2  - i j 3  -17 t -  5 J . -$ j 2 )  H~ - a 
a H" (- 1 

Hu ~q H: 128 16 
t 
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.(((xi -yi)xv t 2 X U  Y , , y v )  C O S  ( j A u  - j A,) t ( - 2 X u Y , l X v  t ( X i  - Y i ) Y , )  s i n  (jAu - j A,,)) 

-5 . 7 -15 3 . 1 13 - J + -  J z  - _  t - J --Jz) Hu-  
16 8 : I 3 ’  (E 16 8 Hu 

t (& t J )  H: - t 

1 

H,, i‘q H: 
I 

( ( ( X i  - Y f )  X, t 2Xu  Yu Y,) cos ( j hu - J A,) t (2X, ,  Yu Xv - (X: - Y i )  Y,) s i n  ( j hU - j hV )) 

10 



-L j 3  t (--- -27 11 . 3 . a 
2 1 2 8  16 I -TI2) H'q 



x: (x, (xt - 3Y:) c o s  ( j Au - j A,) - Yv (3Xt  - Y: ) sin ( j A, - j A, )) 

H t  4(J-1Bu"')  ((PUPv t Q , Q , )  c o s  ( ( j  - l ) A u  - ( j  - l ) A v )  
1 e 

q q q  4 p ;  
-- 1 

/2  t 

- (Q, Pv - PLl Q,) s i n  ( ( j  - 1)  A, - ( j  - 1)  A,)) 

+ (xu (Qupv - p,Qv) - Y,, (P,,PV t Q,,Q,)) s in  ( ( j  i l ) A u  - ( j  t 1)  A,)) 

12 
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t 2pvQv sin ( ( j  - l ) h u  - ( j  - l ) h V ) )  

14 



, 

t ( 2 X v  Pv Q, t Yv 0': - Q,')) sin ( ( j  - 1 )  hL, - ( j  - 1 )  k , ) )  

t ( 2 X v P y Q y  - Y v ( P :  -Q:)) sin ( ( j  - ( j  

15 
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1 1 .  1 
- t - J  t - H u -  H i  b$>,ju*") "( 4 4 16 a i , )  H, 1% H: ,Bi 
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5. LINEAR FIRST ORDER PARTIAL DIFFERENTIAL EQUATION 
OF THE DETERMINING FUNCTION slp WHICH ELIMINATES 
THE SHORT PERIOD TERMS 

Its expression obtained through the classical way of Von Zeipel's method is: 

with 

and F;~, = set of the short period terms of F,l, obtained from (23), H A ,  H: , X: , Xi, P: , Pi being 
the new Hori variables which correspond to the old ones HL, , H v ,  X,, , X, , Pu , Pv in the canon- 
ical change of variables defined by the equality 

19 



FW,,, Hv, Xu, Xv, I-',,, Pv. A',. Av, Y", Yv, QL,, Qv> = F'(H:, H:. Xi, X:, P:, P:, Y:. Y:, Q:, (2:) 

F' being the new hamiltonian which no more depends upon the A'S. From (25) we obtain: 

aF, - k4 mi 
-- 
;3L: - LA3 

From (25) and from the equality (6) written with the new variables L: , H:, Xi, PA, Y:, QA 
we obtain: 

and the similar equalities in the index V .  (24) may therefore be written: 

Fip being a sum of expressions of the form A c o s (  qAu - q h v  ) + B sin(qku - q h v )  with q f 0 
and A, B independent of A 
order partial differential '&quation 

and h V  , we are led, according to (26), to solve the linear first 

A and B being functions of X:, X i ,  Y,,,  Yv, Pl:, P i ,  Q,,, Q,, HA,  H i .  

6. THE INTEGRALS OF THE SYSTEM OF CHARACTERISTICS 
OF THE LINEAR FIRST ORDER PARTIAL DIFFERENTIAL 
EQUATION OF slp 

The coefficients of the linear f i rs t  order  partial  differential equation (27) are nomore 
constants as i n  the case of the Delaunay variables; they are functions of the Hori variables 
themselves but this situation may be easily overcome. The system of equations of the 
characteristics of (27) is: 

20 



We obtain at once, from (28), t h e  four integrals: 

k,  , k,, h,, h, being arbitrary constants. 

the old ones yU,  Q,, we obtain: 
On the other hand, from ( 6 )  written with the new Hori variables L: , H:, X: , P: and 

and the similar equality with the index v instead of LI.  

We have therefore, with respect to (27) in which L;,, L:, HA, H i  are considered as 
constants and according to (29), the two supplementary integrals: 

(k l  + k,)' t . = M (311, L ' - j  h. H'-3 -- 3 H,',-4 ( k l  t k , )  + ?  H I - 5  ,, 
4 2  

M, N being arbitrary constants. 

From (28), (31), (32) we obtain a third supplementary integral: 

.3 ~ 1 - 3  
v v  

,I = J l  h --A 
Lf L:,-3 

(33) 

j being a n  arbitrary constant, 

21 



Moreover, from (28) and (29) we obtain the four other supplementary integrals: 

- A, = K,, Q, - A, - K,, arc s i n  Y, arc s i n  

- AV = H, Y" - A  = H,, arc s i n  QV arc s i n  

JY; t xi' JQ: + P:' 
(34) 

K, , K, , H, , H, being arbitrary constants. (28) admits therefore the four integrals (29), the 
two integrals (31) and (32), the integral (33) and the four integrals (34) that is to say eleven 
integrals. 

.I 

From (29) and (33) we obtain: 

X: = cos (A., t K,), P: 7 q c o s  (A, t K,), Y, q s i n  (A, + K,), Q, = % s i n  (A, t K2), 

7. DETERMINATION OF Slp 

Each equation (27) is characterized by the pair  of coefficients A, B. There a r e  65 
such pairs ,  that is to say 65 equations (27). We solve each of those 65 equations. SIP is 
the sum of the 6 5  solutions we thus obtain. 

1. We shall develop in a detailed manner the calculation for the pair of cozefficients 
A = A, x:, B = i A o  Y,,, A 
We have, according to (28), (31), (32), (33): 

being a function of H,;, H:, XA2 + Y i ,  X:' + Y?, pi' + Q U I  P:' + Q : .  

- .  d S I P  .- 1 
(A, X: c o s  (y (1 -%) hu - qj,) f A, YU s i n  ( q  (L 

dAu - k4 mi e M 
that is to say, in virtue of the f i r s t  and third equalities (35): 

2, being an  arbitrary constant. 

22 



We have, according to (33): 

whence, according to the f i rs t  and third equalities (35): ~ 

The general solution s,, is therefore in this case, according to (29), (31), (32), (33), (34): 

(38) 
Q“ - At,, a r c  s i n  QUI a r c  s i n  

1 PA’ + Q: ,’P:’ + Q: 

F being an arbitrary function of i ts  arguments. We shall assume F = 0 and we shall con- 
sider separately the two cases A = AoXl’,, B = A, y,, and A = A, X:, B = - AoYu. According 
to (30) and the similar equality with the index v instead of U, slp is, in the case 1, the 
index q being replaced by the index j : 

and, in  the case 2: 

A, 

- k4 m i  

Yu c o s  ( j A U  - j A v )  t X:, s i n  ( j h , ,  - j X v )  
s;, - 

(1  t j ) i3;f - j .’”, H:-3 

23 



A, being a function of H A ,  H:, x;2 + y,' , x c 2  + Y;, pi2 + Q,' , P:' + Q; in the part 

A,, 

- k4 in: 

Yu c o s  ( j X u  - j h v )  T X: s i n  ( j A u  - j h v )  

( 1  T j )  e H:l-3 f j e H:-3 
- 

of SIP and a function of HA, H: in  the part 

4 

2. A similar procedure i s  applied for each of the other 64 pairs of coefficients A, B. 
Summing up the 65 SIP thus obtained, we have finally: 

s i n  ( j h u  - j h v )  
X 

- j H,',-3 t j e H:'3 

24 



Yll c o s  ( jXl l  - j h v )  - X: s i n  ( jhl l  - j h v )  
x 

(1 - j )  /3: + j 115 

25 



- 3 (1 t j ) bt HA-4 (X:' t Y,' t PA2 + Q,') - - 3 j ,L? H:'4 (X:' t Y,' t P:' t 
2 2 

(1 t j )  13: - j e H:-3 

X 

3 3 - j H,',-' (X:' t Y,' t Pi' t Q:) t (1 t j )  bt H:-4 (X:' + Y,' + P:' t Q,') 

- j 0; H,1-3 t (1 t j )  4 H:-3 

Yv cos ( jX , ,  - j h v )  - X: s i n  ( j A u  - j h v )  

- j P i  H,',-' i (1 t j )  Lf H:-3 
x 



f 

27 



- (X:, Yv t Y,, x:) cos ( j  A,, - j A " )  - (X: Xt t YU Y,) s i n  ( j  hu - j X,) 

( 1  - j )  /3;1 H,',-3 - ( 1  - j )  H:-3 

(- X: Y, t YI1 X:) cos ( j A l l  - j A v )  i (X:, X: t Y,, Y,) s i n  ( j X u  - j A v )  

( 1  .t j )  ,lf H,',-3 - ( 1  t j )  k," H:-' 
x 

2Xt Yv c o s  ( j  A l l  - j A,) - (Xd' - Y:) s i n  ( j X l l  - j A,) 
x - - j ,lt H,'l-3 t (2  t j )  Hi'3 



2X: Y, c o s  ( J A,l - j A,) t (Xi' - Y s )  s i n  ( j  All - j A,) ,. 
j i i: H,',-3 t ( 2  - j )  ;: 

1 
i 

H' (1 m " t y  

i 1 - -  
6 128 16 8 - J  t - J  24 8 

1 3 ,  5 . 2 + L  j 3  + 
1 

H:, v q  H:2 

29 



t 

I 

(2X:, Y,, X: - (XL2 - Y:) Y,) cos ( j  All - j A,) - ((XA2 - Y i )  X i  t 2XL Yu Y,) s i n  ( j  Xu - j A,) 
X 

(2 - j )  H:-3 - (1 - j )  p", 

(2X,', Y, X: - (X:' - Y:) Y,) cos (jh,, - jAv)  t ((XA2 - Y:) X: + 2X: Yu Y,) s i n  ( jA, ,  - jAv)  
X 

(2  t j )  - (1 t j )  $ Hte3  

(2X: X: Yv t Yu (X:' - Y:)) cos ( j  A,, - j A,) - (X: (X:' - Y:) - 2Yl l  X: Y,) s i n  ( j  kU - j A,,) 

(1  - j )  [j: H,',-3 t ( 2  t j )  1: H:-3 
X 

30 



. 

1 17 6 5 .  7 . 2  1 .  
tp (z+%J t j j J  t - J 3 t  

Hd3 6 

31 



59 1 . a - - -  
t (128 2 I) HAT 

Yv (3Xt2 - Y:) C O S  (jAu - j X v )  t X: (X:’ - 3Y:) s i n  ( j A u  - j A , )  

j fi: t ( 3  - j )  e H:-3 

(Q, P: - P,: Q,) cos  (( j - 1 ) ill - ( j - 1 )  A,) + (PAP: 3- Q,, Q,) s i n (( j - 1 )  A, - ( j - 1)  A,) 
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2P: Q,. c o s  (( j - 1) Xu - ( j - 1) k,) - (P:’ - e)  s i n (( j - 1) hu - ( j - 1 ) A,) 
H,’, b.: ,?i * ) 

1 1 e 
V 13: (1 - j )  [‘;l t (1 t j )  e 

$ - - -  

H I S  8 

34 
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(2X,', P: Q, - Yu (P:' - Q,)) 2 cos ( ( j  - 1) A, - ( j  - 1) A,) 

(X: (P:2 - Q:) t 2Y, Pi Q,) s i n  ( ( j  - 1)  A, - ( j  - 1) 

- j H:-3 t (1 t j )  8 Htm3 

(X: (P:' - Q:) - 2Yv P: Q,) s i n  ( ( j  - 1) A,, - ( j  - 1) 

(2Xi  P: Q, t Yv (Pi2 -Q:)) c o s  ( ( j  - 1) A,, - ( j  - 1) A,) 

(1 - j )  Pi t ( 2  t j )  e H:-' 

(2X: P: Q, - Y, (P:* - Qf)) c o s  ( ( j  - 1) A, - ( j  - 1) A,) 

- (X: (P:' - Q:) t 2Y, Pi Q,)  s i n  ( ( j  - 1)  A, - (j - 1) 

(1 - j ) /? t j e 
35 
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(2X: P,', Q, - Y, (PA2 - Qi)) c o s  (( j - 1) A, - ( j  - 1) A,) 

(X: (PI2  - Qt) + 2Yu P: Q,,) s i n  (( j - 1) A, - ( j  - 1) A,) 
(2  - j )  H,',-3 t (- 1 i j )  8 H:-3 

(2X: Pi Q, t Yv (PA2 - Qi)) c o s  ( ( j  - 1) Au - ( j  - 1.) A,) 

t (X: (P,',' - QIf) - 2Yv Pi Q,,) s i n  ( ( j  - 1) 'ill - ( j  - 1) 

(1 + j )  + ( 2  - j )  6 H:-3 
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8. FIRST ORDER PARTIAL DERIVATIVES OF S I P  WITH RESPECT 
TO THE HORJ VARIABLES AND ELIMINATION O F  THE FIRST 
SHORT PERIOD TERMS 

(39). 

The f i r s t  order partial derivatives of slp with respect to X:, , Y, , P: , Q, , X:, Yv , P: , Q, 
are obtained at once from (39) and we shall not write them. We shall no more write the 

f i r s t  order  partial derivatives of SIP with respect to A,, and A, which are also obtained 
a t  once from (39). All we have to do is to calculate the f i r s t  order partial derivatives of 

P; Q, become t e rms  of order three in the f i r s t  ordgr partial derivatives of SIP with respect 
with respect to HA and H: . Since terms of S of order four in X I  , Y,, , P,,' , Q,, X i ,  Y,, 

P 

39 



to X:, Y, , P: , Q,, xd , 'r, , P: , Q, , we shall truncate the first order partial derivatives of S,, 
with respect to HA and H: to the sum of their t e rms  of order 0, 1, 2 in x: , Y,, P A ,  Q,, x: , 
Yv 9 PI 9 Q, * The first order partial derivatives of s, with respect to x:, Y, , PA, Q, , X: , 
Y, , P: , Q, and its f i r s t  order  partial derivatives w i d  respect to h u ,  hv will therefore be 
also truncated to the sum of their t e rms  of order 0, 1, 2 in x:, Y, , P: , Q, , x: , Y,, P: , Q, . 

A glimpse at (39) shows us that the f i r s t  order partial derivatives of sl, with re- 
spect to H:, and H: and of order o, 1, 2 in x:, Yu, P: , Q,, , X: , Yy , p:, Q, may be reduced to 
the calculation of the f i r s t  order partial derivatives with respect to HI and H: of the three 
quantities: 

with s = 0, *l, the a's, b's, c ' s  being independent of H:, and H:, the a ' s ,  p's positive o r  neg- 
ative rational integers and q ,  , q, relative integers. 

From (40), (41), (42) we obtain, after a short calculation: 

(44) , 
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and: 

We shall develop in a detailed manner the calculation of 

for  the U , ,  U,, U, which appear in the coefficient of the term in  s in( j  A,, - j Av) ,  the calcu- 
lation of dU, /aH: for the U, which appear in the coefficient of the term in 2X: Y,, 
cos(j A),  - j , A v )  - (X,',2 - Y t )  sin(j  A,, - j A,) and the calculation of dJ , /dH; ,  for the U, which 
appear in  the coefficient of the term in (Q, Pi - Y: Q,)COS( j t 1) A" - ( j  t 1) A,) - (P;] Pi t Q, Q,) 
sin((j  t l),i,, - ( j  
cients A,, 0 ; the second one corresponding to the pair  of coefficients A, (XL',' - Y i )  , - A, 2X: Y, 
and the third one corresponding to the pair  of coefficients A, (PA Pi t Q,, Q,) ,  - A, (Q~, Pi, - P: Q,). 

I ) ) , , )  ,the f i rs t  of these three terms corresponding to the pair of coeffi- 

The term in A,, 0 contains four U, , two U, and one U, . The term in A, (X:' - Y',), -A,2X:YU 
contains one u, , no u, and U, . The term i n  A, (P,', PI 
U,,  no u, and u,. 

Q,, Q,,), - A, (Q, Pi - PL', Q,) contains one 

One of the four u, of the term i n  A, ,O is: 

One of i t s  two u, is: 

(49). 
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Its U3 is: 
\ 

Whence, according to  (43), (44), (45): 
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The 1~~ of the te rm in  A, (X:,' - Y,') , A, 2X: Yu is: 

with 

Whence, according to (43): 

1 a3 
t -HA3 - 

3 2  3HA3 

with 

whence: 

W e  should calculate in a similar manner the three others IJ, and the other U, of the 
term in  A", 0 and the dUl /SH:, bu, /N, , dU3 /aH,', of the other terms of Slp  which are of 
order 0, 1, 2 in  x: , Y,, , Pl', , Q,, X: , Yy , P:. , Q,. Multiplying each of these partial derivatives 
by i t s  corresponding factor in A cos  (q A,, - qiLy)+ B s i n  (q A,, - q A v )  and summing up all the 
te rms  we thus obtain, we have finally: 

L 
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x (Y, c o s  ( j  All - j A,) - X: sin ( j  A,, - j k V ) )  
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x (2X: Yu c o s  ( j  hu - j A,,) - (X:' - Yi) sin (j hu - j A,)) 

33 - 1  1 a2 1 
t ( - j) HI2 - + - H:3 - 

aHA2 32 

x (2X:I Yu c o s  ( j  hu - j A,) t (X:,' - Y:) sin (j hu - j A,,)) 
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3 ( 1  t j ) P i  
t ((i j t j 2 )  

(1 t j )  p: - (1 t j )  13; H i - 3  

x ( ( - x , l I Y v  + Y u X : ) c o s  ( j h l l -  jAv) +(X:,X: t Y , , Y v ) s i n ( j h u -  jhv) )  

c 
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? 

A 

- (2p,', Q,, cos ( ( j t 1 ) A,, -- ( j t 1 A-,) - (P,',' - Qi ) sin (( j t 1 ) A,, - ( j t 1 ) hv ) ) 
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In  o rde r  not to  lengthen inordinately this  paper, we shall  not write the expression of 
the par t ia l  derivative of S I P  with respect to  H: , let t ing the reader  to obtain it f rom the 
equalit ies (46), (47), (48) applied to  the  coefficient of each t e r m  A C O S  (q A, - qX,) t B sin (qhu - q h v )  
of S1,, which is of o rde r  0, 1, 2 with respect  to X,', , Y,,, P,', , Q, , X i  , Y, , P: , Q , .  

P, , hLl  , hv , Y , ~  , yV , Q, , Q, a r e  then connected to the new ones HA , H i  , X:, , X i  , P: , P: , Y: , Y: , 
Q:, ,Q: eliminating the short period t e r m s  which a r i s e  f rom the principal pa r t  F,, of the 
disturbing function through the (n - 1 )  n / 2  sets of twelve equalities 

According to  Von Zeipel's method, the old Hori canonical variables H,, , H,, , Xu, X,, P, , 
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For each couple 11,  v of values of 11 and v , we have to solve, by the method of the 
"retour des  suites" of Lagrange applied to functions of several variables, the above equa- 
tions in  hL, and A, and to bring the values of A,, and A, we thus obtain in  the equations 
in  Hu , Xu, P U ,  Y,,, Q, and in  the equations in Hv , x, , P,, Y,, Q,. 

9. CONCLUSION 

1. This study of the elimination of the short period terms of a f i rs t  order general 
planetary theory through Von Zeipel's method and the Hori canonical variables lead us, for  
the calculation of the determining function SI,, to a linear f i rs t  order partial differential 
equation which has no more constant coefficients as it occurred with the Delaunay variables. 
The obtention of eleven integrals of i ts  system of characteristics allowed us, as we showed, 
to overcome this difficulty. On the other hand, the introduction of the Hori canonical vari- 
ables lead us, in a very natural way, to replace the classical Newcomb operator Du,, = i ~ , ~ , ~  d , t l ~ , , , ~  
by the operator H w  ( d / c i H w )  ( W  = 1, 2, . . . , I I  ). The application of this new operator to par- 
ticular cases  of a first  order general planetary theory requires a tabulation of the Laplace 
coefficients as functions of H,', and HL instead of Such a tabulation could easily be 
carried out through the equalities (8) and (9). 

2. The Hori canonical variables x,', , YU, x; , yV which are of the order of magnitude of 
the eccentricities according to the equalities (16) and the Hori canonical variables P: , 0, , 
P: , Q, which a re  of the order of magnitude of the sines of inclinations according to the 
equalities (17) appear in Sip, according to (39), in the form of algebraic mononomials and 
polynomials. The partial derivatives of S l p  with respect to x,', , yLI , PI , Q, , x: , Y,, P: , Q, 
do not contain therefore divisors in those variables and the complication due to the presence 
of small divisors in the partial derivatives of slp with respect to the linear variables when 
we use Delaunay variables is thus avoided. 

3. (39) shows also that each argument of the sines and cosines of the truncated Fourier se r ies  
of the disturbing function F ~ ~ ,  of s lp and of the partial derivatives of slp with respect to 
Hori variables is of the form q :  ,, - q I , ,  which did not occur with the Poincare variables. 
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